

13-15 GHz Passive Variable-Gain Switched Phase Shifter with X-Attenuator using 28-nm Bulk CMOS

Min-Seok Baek, Jae-Hyeok Song and Choul-Young Kim SCDL, Department of Electronics Engineering, Chungnam National University, Korea

I. Introduction

Driven by high-speed data demands, the Ku-band (13.75–14.6 GHz uplink) has become a key spectrum for SATCOM.

III. Simulation Result

- In SATCOM phased arrays, phase shifters enable precise beam steering by dynamically controlling signal direction, allowing flexible link optimization in mobile or multi-beam scenarios.
- ✓ In this work, a Ku-band variable-gain phase shifter is implemented using an X-attenuator structure that enables 180° phase control and attenuation tuning, optimized for compact beam steering systems.

Fig. 4. Full Layout of the Variable-Gain Phase Shifter

Fig. 2. Full Schematic of Variable-Gain Phase Shifter

Fig. 3. Phase/gain response with voltage variation in the X-atten.

e 250

- Frequency: 13-15 GHz
- Topology: Passive Variable-Gain Switched Phase Shifter
- Applied Technique:
 - \checkmark X-attenuator integrates a phase inverter, enabling a continuous 180° phase control range.
 - \checkmark Gain tuning is achieved through a voltage-controlled passive attenuation path with high linearity. ✓ A passive 5-bit switched-type phase shifter provides discrete phase control with no power consumption. ✓ The 90° phase bit adopts a hybrid high-pass/low-pass filter design for wideband phase flatness. \checkmark Transistor sizes are optimized to balance insertion loss and phase slope sensitivity. \checkmark Top-layer metal (M9) is utilized in inductors and transmission lines to minimize parasitic loss.

- **Simulation Result:**
 - ✓ Frequency: 13-15 GHz
 - \checkmark Phase Resolution: 0~360° (LSB=5.625°)
 - ✓ Attenuation Range: 25 dB

IV. Conclusion

Ref.	This Work (Sim.)	[1] IMS'24	[2] ICMMT'19	[3] ACCESS'22
Process	28-nm CMOS	0.13-um SiGe	0.13-um CMOS	65-nm CMOS
Technique	X-atten. with STPS	STPS+ RTPS	High Pass / Low Pass	Low Pass LC
Freq. (GHz)	13 - 15	14 - 15	8.5 – 10.5	5-11
RL (dB)	> 9	> 8.4	> 13	> 10
IL (dB)	9.08 – 10.8	4.3 - 8.1	14	< 41
RMS PE (°)	0.7 – 1.75	< 12	4	< 5.2
RMS GE (dB)	0.17 - 0.27	< 1.1	0.4	-
Power (mW)	0	0	0	0
Core Area (mm ²)	0.3	0.17	3.52	2.46
he proposed var MOS process.	iable-gain PS The PS den	was designonstrates	ned using a superior	28-nm Bu performan
ompared to othe	r literature in	the field.		

[1] S. Kim, K. W. Choi, B. Yoon, J. Kim and I. Ju, "Compact, Low Loss 4-Bit Ku-Band Hybrid Passive Phase Shifter Realized in 0.13µm SiGe HBT BiCMOS for LEO SATCOM," 2024 IEEE/MTT-S International Microwave Symposium - IMS 2024, Washington, DC, USA, 2024, pp. 760-763.

[2] S. Wu and D. Pang, "A 6-bit CMOS Passive Phase Shifter for X-Band Phased Arrays," 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Guangzhou, China, 2019.

[3] J. -M. Song and J. -D. Park, "A 5–11 GHz 8-bit Precision Passive True-Time Delay in 65-nm CMOS Technology," in IEEE Access, vol. 10, pp. 18456-18462, 2022.

Acknowledgement

The chip fabrication and EDA tool were supported by the IC Design Education Center(IDEC), Korea.

